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Abstract Enumeration of molecules is one of the fundamental problems in bioin-
formatics and chemoinformatics which is also important from a practical viewpoint.
We consider the problem of enumerating the stereo-isomers of tree-like polyinos-
itol molecules (with chemical formula C6nO5n+6H4n+2 where n is the number of
hexagonal oinositol rings) and monosubstituted tree-like polyinositols (with chemical
formula C6nO5n+6H4n+1Z). We establish recursion counting formulas for the num-
bers of the stereo-isomers for these two classes of molecules, in which chirality is also
taken into account. In our study, the generating function, Pólya enumeration theory
and ‘Dissimilarity Characteristic Theorem’ play important roles. Compared to some
known computer programs such as ISOMERS, MOLGEN, exhaustive construction
and Dynamic Programming etc., our method is more efficient to our enumeration
problem with larger number of inositol rings. Further more, based on the obtained
recursion formulas, we derive the asymptotic values for the numbers of these two
stereo-isomers from which we conclude that almost all tree-like and monosubstituted
tree-like polyinositols are chiral.
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1 Introduction

Enumeration of molecules is one of the fundamental problems in bioinformatics,
chemoinformatics and has attracted chemists, biologists and mathematicians for more
than one century [1,2]. It is also important from a practical viewpoint because it plays
an important role in drug discovery, experimental structure elucidation, molecular
design [3], virtual libraries constructing, hypotheses testing and experiments optimiz-
ing [4].

We consider the enumeration problem of the stereo-isomers of tree-like polyi-
nositol (TL-polyinositol) molecules. A TL-polyinositol (with chemical formula
C6nO5n+6H4n+2) molecule is a three-dimensional polymer, consisting of n hexag-
onal inositol rings (a six carbon ring structure with a hydrogen and a hydroxyl group
at each carbon position), any two of which are connected by at most one C–O–C bond
and whose planar chemical graph will tend into a tree after contracting each inositol
ring into a vertex, see Fig. 1. Because of the rapid inter-conversion of conformers,
each inositol ring can be schematized by a planar hexagon. The C–H bond and the
C–O bond at the same carbon position lie on different sides of the planar hexagon,
i.e., one is above the horizontal planar hexagon while the other is below, if we fix the
planar hexagon in the average plane.

Of the lowest weight among TL-polyinositols, inositol or cyclohexane-1, 2, 3, 4, 5,
6- hexol [5,6] exists in nine (when chirality is ignored) possible stereo-isomers [7], of
which the most prominent form and widely occurring in nature, is myo-inositol (former
name meso-inositol), see Fig. 1a. The synthesis and properties of inositols have been
widely studied by chemists [8–13]. Many other oligomers of TL-polyinositols i.e.,
oligoinositols, have also been synthesized and studied, such as the linear polyinositols
1,2-L-chiro-inositol conjugates [14] which suggest a tendency towards a β-3-turn
secondary structure; muco-inositols [15] whose properties and biological activities
were investigated; and others [16] whose biological evaluations were studied by being
tested against some glycosidase and by NMR experiments.

Enumerating tree-like molecules or acyclic chemical compounds may date from
1857 when Cayley [1] successfully found a recursive formula for the number of alka-
nes. In the past few decades, various techniques were established for enumerating
tree-like molecules [17–20]. And lots of tree-like molecules beyond alkanes have
been discussed, e.g., tree-like polyhexes (with asymptotic analysis) [21]; phenylenes
[22]; tree-like polymer [23]; radicals, monoalcohols, glycols and esters [24]; aliphatic
cyclopropane derivatives [25], etc. In mathematical aspects, a large number of trees
or tree-like graphs with some specific requirements were also discussed; we refer to
[26–34] and the references cited therein, for examples.

In general, it is difficult to get an explicit expression for the number of tree-like
configurations. Instead, finding a recursion counting formula to deal with the problem
has been shown to be an effective approach. When a recursion formula is established,
its asymptotic behavior is analyzed as well. Pólya [2] and Otter’s [18] methodology
for analyzing the asymptotic behavior was systematically summarized by Harary et al
[19], as the so-called ‘twenty-step algorithm’.

We note that in the above enumeration problems, all the molecules are modeled,
in terms of graph theory, as unlabeled trees. In practice, however, some enumeration
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Fig. 1 a Molecule graph for myo-inositol. The –H is omitted in each C–H bond. The black and dashed lines
represent that the corresponding C–O bonds are above and below the incident inositol ring, respectively. b
The four equivalent molecule graphs of a diinositol. c A tree-like polyinositol (left) and its contracted tree
(right). d. A long edge. e A short edge above some hexagonal plane. f A short edge below some hexagonal
plane. g A monosubstituted tree-like polyinositol (left) and its contracted rooted tree (right), where the
black vertex represents the planted inner vertex. h The general structure of a monosubstituted tree-like
polyinositol in which some Ti may be an –OH group

problems in other areas are often modeled by certain kinds of labeled trees; we refer
the reader to, for example, Friedberg’s work [35].

The enumeration of stereo-isomers of TL-polyinositols with smaller number of
inositol rings have been done by some chemists and mathematicians [36]. It was
started by the question posed by Hudlicky et al [37], who wondered how many stereo-
isomers exist of diinositols and of one constitutional isomer of triinositols (note that
there are three constitutional isomers for triinositols). In [38] Dolhaine et al. gave the
answer regarding diinositols, who obtained 528 as the number of stereo-isomers of
diinositols by applying their program ISOMERS. In two subsequent papers, Dolhaine
and Hönig produced the sum of the stereo-isomer numbers of all constitutional isomers
of triinositols [39], and evaluated the number of possible achiral forms of some inositol
tetramers [40]. And in [41], Rücker et al. counted the stereoisomers of some other
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oligoinositols and achiral oligoinositols, by using three methods (manual exhaustive
construction, Burnside lemma and the computer program MOLGEN). They obtained
the following results: (1) There are 9 monoinositols and 7 are achiral; (2) There are
528 diinositols and 48 are achiral; (3) There are 82176 triinositols with only a small
fraction (768) of isomers being achiral. Recently in [3], Imada et al. enumerated the
stereo-isomers of tree-like quadinositols by using Dynamic Programming.

In this paper, we aim to establish a more efficient method to count the stereo-isomers
of TL-polyinositols with larger number of inositol rings, in which chirality is also taken
into account. To this end, we introduce five generating functions for the numbers of TL-
polyinositols and monosubstituted tree-like polyinositols (MTL-polyinositols) both in
two cases (i.e., when charity is ignored and when charity is considered), and achiral
MTL-polyinositols. We establish several functional equations for these generating
functions by characterizing the symmetry groups caused by asymmetry around inositol
rings, using Pólya’s enumeration theory [2] and specifying the so-called ‘Dissimilarity
Characteristic theorem’ [18,26] in accord with TL-polyinositols. Compared to some
known computer programs such as ISOMERS, MOLGEN, exhaustive construction
and Dynamic Programming etc., our method is more efficient to our enumeration
problem with larger number of inositol rings. As an example, the numerical results
for the number of the inositol rings up to 50 are tabulated. The above functional
equations are also the fundamentals of the ‘twenty-step algorithm’ for analyzing the
corresponding asymptotic behaviors, by which we derive the asymptotic values for the
number of the corresponding stereo-isomers. The asymptotic values are well-fitting
to the corresponding numerical results, from which we can conclude that almost all
MTL-polyinositols and TL-polyinositols are chiral.

2 Results and discussion

2.1 Terminology and definitions

In a TL-polyinositol molecule graph, the C–OH bonds on cyclohexane rings and C–
O–C bonds between cyclohexanes can be treated as rigid lines. Though there may be
four kinds of rigid lines for a C–O–C bond, they can be transformed to each other
by rotating one or two of its two sides [40], see Fig. 1b. Thus, to enumerate TL-
polyinositol stereoisomers, we can assume that they have only straight C–O–C bonds,
i.e., the C–O–C bonds in the molecular graphs in left upper and right lower position
in Fig. 1b. When we contract each hexagon (inositol ring) and each OH group into a
vertex, and delete –H in each C–H, the stereo molecular graph of a polyinositol will
tend into a stereo rigid tree. We call it contracted tree of the polyinositol, see Fig. 1c.
The vertices representing an OH and a hexagonal ring are called a leaf vertex and an
inner vertex, respectively. The rigid lines representing a C–O–C and a C–OH bonds in
a contracted tree are called a long edge and a short edge, respectively, see Fig. 1d–f.

An MTL-polyinositol is obtained from a TL-polyinositol by replacing an -OH group
by a substituted group -OZ. We call this C–OZ bond and the incident hexagonal ring
the planted bond and the planted ring, respectively. Consequently, we call the resulting
contracted tree, the corresponding leaf vertex, incident edge and incident inner vertex
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the planted contracted tree, planted leaf vertex, planted edge and planted inner vertex,
respectively, see Fig. 1g.

Note that our enumeration problems for TL-polyinositols and MTL-polyinositols
with n hexagonal rings are now equivalent to enumerate the contracted trees and
planted contracted trees with n inner vertices.

We define five generating functions involving the numbers of stereo-isomers of
MTL-polyinositols and TL-polyinositols as follows, in which the prefix ‘(CI-’ stands
for ’when chirality is ignored’, which means that each of a pair of enantiomers is
separately counted, and the prefix ‘(CC-’ stands for ‘when chirality is considered’,
which means that each pair of enantiomers is counted just once.

(1). R(x) = ∑∞
n=0 rn xn , where rn is the number of CI-different MTL-polyinositols

with n inositol rings;
(2). R(x) = ∑∞

n=0 rn xn , where rn is the number of CC-different MTL-polyinositols
with n inositol rings;

(3). T (x) = ∑∞
n=1 tn xn , where tn is the number of CI-different TL-polyinositols with

n inositol rings;
(4). T (x) = ∑∞

n=1 tn xn , where tn is the number of CC-different TL-polyinositols
with n inositol rings;

(5). B(x) = ∑∞
n=0 bn xn , where bn is the number of achiral MTL-polyinositols.

Note 1. One can see that the number of chiral MTL-polyinositols (resp., TL-
polyinositols) with n inositol rings equals to 2(rn − rn) (resp., 2(tn − tn)), while
the number of achiral MTL-polyinositols (resp., TL-polyinositols), i.e., bn , equals to
2rn − rn (resp., 2tn − tn).

We recall some elementary concepts of the classic Pólya’s and Burnside’s enumer-
ation theory. For a permutation g of a permutation group G on an m-elements set S, it
is well known that g can be split into cycles in a unique way, say b1 cycles of length
1, b2 cycles of length 2, . . . , bm cycles of length m (m = b1 + 2b2 +· · ·+ mbm). The
cycle index of G is therefore defined by

PG(x1, x2, . . . , xm) = 1

|G|
∑

g∈G

xb1
1 xb2

2 . . . xbm
m . (1)

A coloring C of S with color set C where each color c in C has a weight w(c), is an
assignment of each element s ∈ S with a color C(s) ∈ C . The weight of a coloring C
(denoted by w(C)), is defined as w(C) = ∑

s∈S w(C(s)). Two colorings C and C′ are
said to be equivalent if there is a permutation g ∈ G such that C(g(s)) = C′(s) for
any s ∈ S. Dented by zk the number of nonequivalent colorings of S with weight k,
and with

Z(x) =
∑

k

zk xk,

as its generating function. Then by Burnside’s enumeration theory,

zk = 1

|G|
∑

g∈G

Ψk(g),
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where Ψk(g) is the number of colorings with weight k left fixed by g [42], i.e.,

Ψk(g) = | {C : w(C) = k, C(g(s)) = C(s) for any s ∈ S} |.

Denote by lw be the number of colors in C with weight w, with

L(x) =
∑

w

lwxw,

as its the generating function. Note that if a coloring with weight k is fixed by a
permutation g, then the elements in the same cycle of g are assigned by the same
color (so have the same weight) in the coloring. So a cycle length of j contribute
totally weight of j ×w to the coloring and has lw choices to assign, if its elements are
assigned by a color of weight w. What is more, the sum of the weights of all cycles
of g equals to k. Thus,

Ψk(g) =
∑

m∑

j=1

b j∑

i=1
j×w j,i =k

∏

j=1,...,m

∏

i=1,...,b j

lw j,i ,

which equals to the coefficient of xk in the polynomial

L(x)b1 L(x2)b2 · · · L(xm)bm .

Thus, we have

Z(x) = 1

|G|
∑

g∈G

L(x)b1 L(x2)b2 · · · L(xm)bm , (2)

which nicely corresponds to the cycle index of G.

2.2 Recursion counting formula for the numbers of CI-different and CC-different
MTL-polyinositols

We can suppose the planted hexagonal ring of each MTL-polyinositol is fixed on the
average plane such that the planted bond is above the average plane. It would be helpful
to consider a MTL-polyinositol with n hexagonal rings as one constructed by fusing
a C–OH bond of a ‘smaller’ TL-polyinositol or an -OH ligand to each of the five
numbered O–H bonds of the planted inositol rings, such that the total number of all
the hexagonal rings is equal to n. We call these smaller TL-polyinositols the branches
of the planted ring. Since each branch has a specified C–OH bond to be fused to the
planted ring, we may treat this branch as a MTL-polyinositol with the fused C–OH
bond as its planted bond.

We denote by (T1, T2, . . . , T5) the MTL-polyinositol with Ti (i ∈ {1, 2, . . . , 5}) as
the i-th branch (some braches may be an -OH ligand) of its planted ring, see Fig. 1h.
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Note that each branch can be treated as a color with the number of hexagonal rings it
contains as its weight. Then each MTL-polyinositol with n rings can be treated as a
coloring of the planted ring with weight n − 1 which is defined as follows: the i-th of
its five positions (each of which may above or below the average plane) is assigned
with color Ti , for i = 1, 2, . . . , 5, and the sum of the weights of the colors equals to
n − 1. Then the number of MTL-polyinositol with n rings equals to the number of the
nonequivalent colorings with wight n −1 using the color in C under G, where C is the
set of CI-different MTL-polyinositols and G is the group by which (T1, T2, T3, T4, T5)

is interconverted.
In the case when charity is ignored, G is the identity group, i.e., G = G1 =

{e} = {(1)(2)(3)(4)(5)}. Because the planted bond and planted ring have been fixed.
(T1, T2, T3, T4, T5) can not be interconverted by any other permutation. Using the
same notations to that defined in Sect. 2.1, we have rn = zn−1, ln = rn , for n =
1, 2, . . .. And let l0 = r0 = 1. Because when we color the root ring, -OH is a color
choice. Then R(x) = 1+ x Z(x). Suppose a coloring C is left fixed by permutation g.
Then for C , each cycle of g has 2li = 2ri choices to assign now, if the color weight of
each element in the cycle is i , since either the side above or below of each of the five
positions can be assigned. So by a similar discussion to that before (2), and through
the cycle index of G1, we can deduce that

Z(x) = (2R(x))5,

here.

Theorem 1 The generating function R(x) satisfies

R(x) = 1 + 32x R5(x) = 1 +
∞∑

n=1

32n

n

(
5n

n − 1

)

xn . (3)

Proof By the discussion above, we have the left equation of (3) holds.
On the other hand, let y = 32x, i.e., x = y

32 . Let Q(y) = R(
y

32 ) = R(x). Then

Q(y) = R
( y

32

)
= 1 + 32 × y

32
R5

( y

32

)
= 1 + yQ5(y).

It is known ([43], Problem III, 209, pp. 146, 348) that the solution of the equation for
Q(y) above is

Q(y) = 1 +
∞∑

n=1

1

n

(
5n

n − 1

)

yn,

which implies that

R(x) = 1 +
∞∑

n=1

32n

n

(
5n

n − 1

)

xn .

��

123



1588 J Math Chem (2014) 52:1581–1598

In the case when charity is considered, we suppose the mirror face is vertical to
the average plane and parallel to the planted rigid bond. Then after reflection, the
planted ring of every MTL-polyinositol is still on the average plane and the planted
bond is still above the average plane. Then the group by which (T1, T2, T3, T4, T5) is
interconverted is G2 = {e, α}, where α = (15)(24)(3) is the reflection permutation.
An overlined cycle (· · · i j · · ·) suggests that the color Ti in i th position is permutated
to j th position and is reflected to T i , where T i is enantiomeric to Ti . The cycle index
of G2 is

1

2

(
x5

1 + x1x2
2

)
,

Using the same notations to that defined in Sect. 2.1, now we have rn = zn−1, for
n = 1, 2, . . .. And ln = rn , for n = 0, 1, 2, . . .. Then R(x) = 1+ x Z(x). Note that if a
coloring is left fixed by a permutation g, then an overlined odd cycle must be assigned
by achiral colors (so has 2bi choices to assign), while any other cycle has 2b j , if i and
j the color weights of the elements in the corresponding cycle, respectively. So by a
similar discussion to that before Theorem 1, and the cycle index of G2 we can deduce
that

Z(x) = 1

2
x

[
(2R(x))5 + (2B(x))(2R(x2))2

]

here.

Theorem 2 The generating function R(x) satisfies

R(x) = 1 + 1

2
x

[
32R5(x) + 8R2(x2)B(x)

]
. (4)

Proof By the discussion above and simply (4) holds. ��
Note 2. by Note 1, we have

B(x) = 2R(x) − R(x). (5)

Thus, (3), (4) and (5) provide a recursion algorithm which can be worked by, e.g.,
Maple Soft Program, for counting rn, bn and rn .

2.3 Recursion counting formula for CI-different tree-like polyinositols

In graph theory, Dissimilarity Characteristic Theorem [18,26] for trees establishes a
connection between the generating functions for trees and planted trees. This connec-
tion has been extensively used for various species of trees. In the following we will
specify the Dissimilarity Characteristic Theorem in accord with tree-like polyinositols,
when charity is ignored.

When we delete all leaf vertices and short edges in a contracted tree T , and change
each long edge to a line, we will get a unique tree in graph theory. We call it the
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topological tree of T . It is known that the set of trees with n vertices can be partitioned
into two classes, i.e., central trees and bicentral trees [44]. A center tree contains a
vertex (called the central vertex) whose deletion will decompose the tree into compo-
nents each of which contains less than n

2 vertices, while a bicentral tree contains an
edge (called the central edge) whose deletion will decompose the tree into two com-
ponents both containing n

2 vertices. We call a contracted tree central (or bicentral) if
its topological tree is central (or bicentral). A central vertex and a central long edge
in a contracted tree can be defined correspondingly.

Let T be a contracted tree. A CI-automorphism of T is a rotation of T , after which,
the space which T occupies coincides to that it occupied before. Note that a CI-
automorphism should rotate an inner (leaf) vertex to an inner (leaf) vertex, and a long
(short) edge to a long (short) edge. Two inner vertices or two long edges in T are
called CI-similar to each other if there is an CI-automorphism of T which transfers
one to the other, and are called CI-dissimilar to each other otherwise. A long edge e
is called CI-symmetric if there is a nontrivial CI-automorphism which transfers e to
itself, and is called CI-asymmetric otherwise. We denote by v(T ), e(T ) and s(T ) the
numbers of CI-dissimilar inner vertices, CI-dissimilar CI-asymmetric long edges and
CI-symmetric long edges, respectively.

Theorem 3 (CI-Dissimilarity Characteristic Theorem) In any contracted tree T , we
have

v(T ) − e(T ) = 1. (6)

Proof For a central contracted tree, let v be the central vertex. For each long edge e,
denote by ue be the incident inner vertex of e which is further from v. Then each long
edge e has a unique ue. For each inner vertex u other than v, there is a unique long
edge e such that u = ue. Note that any CI-automorphism will transfer v to itself, for
the uniqueness of central vertex. Then two long edges e1 and e2 are CI-similar if and
only if ue1 and ue2 are CI-similar. Thus there is a one to one correspondence between
CI-similar classes of long edges and CI-similar classes of inner vertices, except one
CI-similar class {v}. Thus (6) holds for central contracted trees.

For a bicentral contracted tree, let e be the central edge. For each inner vertex
v, denote by fv be the incident long edge of v which is nearer from e. Then each
inner vertex v has a unique fv . For each long edge f other than e, there is a unique
inner vertex v such that f = fv . And there are two inner vertex v1 and v2 such
that e = fv1 = fv2 . Note that any CI-automorphism will transfer e to itself, for the
uniqueness of central edge. Then two inner vertices u and v are CI-similar if and only
if fu and fv are CI-similar. If the central edge is CI-symmetric, there is a one to one
correspondence between CI-similar classes of inner vertices and CI-similar classes
of long edges. So v(T ) − e(T ) = 1, as {e} is one CI-similar class. If the central edge
is not CI-symmetric, then each inner vertex and each long edge is a CI-similar class,
respectively. So v(T ) − e(T ) = 1 also holds. This completes our proof. ��

Let T C I
n be the set of all CI-different contracted trees with n (n ≥ 1) inner vertices.

Let
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vn =
∑

T ∈ T C I
n

v(T ), en =
∑

T ∈ T C I
n

e(T ) and sn =
∑

T ∈ T C I
n

s(T ). (7)

Combining (7) with (6), we get that

vn − en = |T C I
n | = tn . (8)

Note that sn = 0, if n is odd; and sn = r n
2

if n is even, by definition. Let

V (x) =
∞∑

n=1

vn xn, E(x) =
∞∑

n=1

en xn and S(x) =
∞∑

n=1

sn xn,

be the generating functions of vn, en and sn , respectively. Then

T (x) = V (x) − E(x) and S(x) = R(x2) − 1. (9)

We discuss the expressions of V (x) and E(x) next.
For an inner vertex x and a long edge e in a contracted tree T , we denote by Tx

and Te the inner vertex rooted tree and the long edge rooted tree obtained from T by
making x and e as their roots, respectively. Note that x have six branches, some of
which may be a single leaf vertex, while e have two branches each of which contains
at least one inner vertex. Let x1 and x2 are any two inner vertices a contracted tree T
which are CI-dissimilar to each other. Then Tx1 and Tx2 are CI-different. Furthermore,
any two inner vertex rooted trees obtained from two CI-different contracted trees are
CI-different. This implies that the number of CI-different inner vertex rooted trees of
order n equals to vn . Similarly, the number of CI-different long edge rooted trees of
order n equals to en + sn .

We now calculate vn and en + sn by enumerating CI-different ring rooted TL-
polyinoisitols and C–O–C bond rooted TL-polyinoisitols as they are equivalent. As
before, we treat a ring rooted TL-polyinoisitol as a coloring of the the rooted ring
by its six branches T1, T2, T3, T4, T5 and T6. Then the number of CI-different ring
rooted TL-polyinositols with n hexagonal rings, equals to the number of nonequivalent
colorings of the rooted ring under G6 with weights n − 1, where G6 is the group by
which (T1, T2, T3, T4, T5 T6) is CI-interconverted, see Fig. 2a and b. Note that G6 =
D6 = {e, β, γ, γ 2, γ 3, γ 4, γ 5, βγ, βγ 2, βγ 3, βγ 4, βγ 5}, where β = (1̃6)(2̃5)(3̃4)

is derived from a vertical rotation which changes the two sides of the rooted ring face,
and γ = (123456) is derived from a horizontal rotation which doesn’t. A tilded cycle

( ˜· · · i j · · ·) represents that, the branch in the i-th position is rotated to the j-position
on the other side of the average plane. We write the cycle index of D6 as

1

12

(
x6

1 + x3
2 + 2x2

3 + 2x6 + 3x̃2
1 x̃2

2 + 3x̃3
2

)
,

where tilded variants represent tilded cycles.
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Fig. 2 a A hexagonal ring and its six branches in a tree-like polyinositol. b The corresponding vertex and
six branches in the contracted tree. c A long edge and its two branches

Using the same notion to that in Sect. 2.1, now we have vn = zn−1, for n = 1, 2, . . ..
And ln = rn , for n = 0, 1, 2, . . .. Then T (x) = x Z(x). Note that a permutation g
contains a tilded odd cycle, then no coloring can be left fixed by g. And every cycle
of a permutation without any tilded odd cycle have 2ri color choices to assign, where
i is the weight of each element in the cycle. By a similar discussion to that before
Theorem 1 and 2, and the cycle index of D6, we have

Z(x) = 1

12

[

(2R(x))6 + 4
(

2R
(

x2
))3 + 2

(
2R

(
x3

))2 + 2
(

2R
(

x6
))]

,

here. And so

V (x)= x

12

[

(2R(x))6+4
(

2R
(

x2
))3+2

(
2R

(
x3

))2 + 2
(

2R
(

x6
))]

. (10)

Similarly, the number of CI-different long edge rooted TL-polyinositols equals to
the number of nonequivalent colorings of the rooted C–O–C bond edge under S2, see
Fig. 2c, where S2 = {(1)(2), (12)}, whose cycle index is

1

2

(
x2

1 + x2

)
.

Using the same notion to that in Sect. 2.1, now we have en + sn = zn , for n = 2, 3, . . .

(note that e1 = s1 = 1). And ln = rn , for n = 1, 2, . . .. Then E(x) + S(x) = Z(x).
By calculating and a similar discussion to that before Theorem 1, we deduce

E(x) + S(x) = Z(x) = 1

2

[
(R(x) − 1)2 +

(
R

(
x2

)
− 1

)]
, (11)

here.
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Theorem 4 The generating function T (x) of the number of TL-polyinositols ignoring
chirality satisfies

T (x) = x

3

[
16R6(x) + 8R3

(
x2

)
+ 2R2

(
x3

)
+ R

(
x6

)]

−1

2

[
(R(x) − 1)2 −

(
R

(
x2

)
− 1

)]
, (12)

Proof By (9)–(11), we have (12) holds. ��
Note 3. By (12), we can count tn through the numbers r0, r1, . . . , rn with the help of
a simple algorithm worked by Maple Soft Program.

2.4 Recursion counting formula for CC-different tree-like polyinositols

A CC-automorphism automorphism of a contracted tree T is a rotation or a product of
a rotation and reflection of T , after which, the space which T occupies coincides to that
it occupied before. Two inner vertices or two long edges in T are called CC-similar
to each other if there is an CC-automorphism of T which transfers one to the other,
and are called CC-dissimilar to each other otherwise. A long edge e is called CC-
symmetric if there is a nontrivial CC-automorphism which transfers e to itself, and is
called CC-asymmetric otherwise. Note that an long edge is CC-symmetric if and only
if its two branches are identical or a pair of enantiomers. We denote by v(T ), e(T )

and s(T ) the number of CC-dissimilar inner vertices, CC-dissimilar CC-asymmetric
long edges, and CC-symmetric long edges, respectively.

Theorem 5 (CC-Dissimilarity Characteristic Theorem) In any contracted tree T we
have

v(T ) − e(T ) = 1. (13)

Proof The proof is analogous to that in Theorem 3. ��

Let T CC
n be the set of all CC-different contracted trees. Let

vn =
∑

T ∈ T CC
n

v(T ), en =
∑

T ∈ T CC
n

e(T ) and sn =
∑

T ∈ T CC
n

s(T ). (14)

Combining (14) with (13), we get that

vn − en = |T CC
n | = tn . (15)

Note that sn = 0, if n is odd; and sn = r n
2
+ (r n

2
−r n

2
) = r n

2
if n is even, by definition.

In fact, r n
2

is the number when the two branches are identical, while (r n
2

− r n
2
) is the

number when the two branches are a pair of enantiomers which are not identical. Let
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V (x) =
∞∑

n=1

vn xn, E(x) =
∞∑

n=1

en xn and S(x) =
∞∑

n=1

sn xn,

be the generating functions of vn, en and sn , respectively. Then

T (x) = V (x) − E(x) and S(x) = R(x2) − 1. (16)

By an analogous discussion to that in the previous subsection, we can obtain that
vn and en + sn are exactly the numbers of CC-different inner vertex rooted trees and
long edge rooted trees of order n, respectively. And they equal to the numbers of
nonequivalent colorings to the rooted ring and rooted C–O–C bond by branches under
D6 and S2, whose cycle indices are

1

24

[(
x6

1 + x3
2 + 2x2

3 + 2x6 + 3x̃2
1 x̃2

2 + 3x̃3
2

)

+
(

x̃
6
1 + x̃

3
2 + 2̃x

2
3 + 2̃x6 + 3x2

1x2
2 + 3x3

2

)]
,

and

1

4

[(
x2

1 + x2

)
+

(
x2

1 + x2

)]
,

respectively. By calculating and a similar discussion to that in the previous subsection,
we have

V (x) = x

24

[

(2R(x))6 + 4
(

2R
(

x2
))3 + 2

(
2R

(
x3

))2 + 2
(

2R
(

x6
))

+
(

2R
(

x2
))3+2

(
2R

(
x6

))
+3(2B(x))2

(
2R

(
x2

))2+3
(

2R
(

x2
))3

]

,

and

E(x)+S(x)= 1

4

[
(R(x)−1)2+

(
R

(
x2

)
− 1

)
+ (B(x) − 1)2 +

(
R

(
x2

)
− 1

)]
.

Theorem 6 The generating function T (x) satisfies

T (x) = x

3

[
8R6(x) + 8R3

(
x2

)
+ R2

(
x3

)
+ R

(
x6

)]

−1

4
R2(x) + 1

2
R(x) + 1

2
R

(
x2

)
+ 1

4
B(x) − 1, (17)

Proof By (16) and the expressions of V (x) and E(x), (17) holds. ��
Note 4. By (17), we can count tn through the numbers r0, . . . , rn and b0, . . . , bn with
the help of Maple Soft Program.
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2.5 Asymptotic analysis

In this section, we give an asymptotic analysis for the numbers rn, tn, rn and tn , by
applying the ‘twenty-step algorithm’ summarized by Harary et al [19]. We denote by
r(n), t (n), r(n) and t(n) the asymptotic values of rn, tn, rn and tn , respectively. The
relations (3), (4), (12) and (17) obtained in the previous sections are the bases for
implementing the twenty steps. The key points are as follows:

(1). Show that σ = 0.00256, where σ is the radius of convergence of R(x).
(2). From (3) we define a function F(x, y) = 32xy5 − y + 1 and prove that F(x, y)

is analytic for all y and x with |x | < σ
1
2 . Moreover, F(x, R(x)) = 0 for all x

with |x | ≤ σ .
(3). Show that Fy(x, R(x)) = 0 and, consequently, 160R5(σ ) = 1, combining which

to F(σ, R(σ )) = 0 we can compute R(σ ) = 1.25.

(4). Show that σ is the unique singularity of R(x) on the circle of convergence [45]
and a branch point of order 2 for R(x), from which we can rewrite R(x) as the
form

R(x) = R(σ ) − k1(σ − x)
1
2 + k2(σ − x) + k3(σ − x)

3
2 + · · · . (18)

(5). From (3) and (18), the coefficient k1 can be expressed in terms of σ and R(σ ),
which gives that

k1 = 53

42 = 7.8125.

(6). Applying a result of Polya (lemma on page 84 of [2]), we finally get the asymptotic
value of rn :

rn ∼ r(n) = k1

2

(σ

π

) 1
2

n− 3
2 σ−n, as n → ∞.

The discussions for tn, rn and tn are analogous which give that

tn ∼ t (n) = 3l3
4

(
σ 3

π

) 1
2

n− 5
2 σ−n, as n → ∞,

rn ∼ r(n) = q1

2

(σ

π

) 1
2

n− 3
2 σ−n, as n → ∞,

and

tn ∼ t(n) = 3p3

4

(
σ 3

π

) 1
2

n− 5
2 σ−n, as n → ∞,
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where

3

4
l3 = k1

2

(
R(σ ) − 1

σ

)

= 58

45
= 381.4697265625,

q1 = k1

2
= 53

2 × 42 = 3.90625

and

3

4
p3 = k1

4

(
R(σ ) − 1

σ

)

= 58

2 × 45
= 190.73486328125.

The detailed process of the above arguments is included in the supplementary
material.

Note 5. We can see that r(n) = 2r(n) and t (n) = 2t(n) which imply that almost
all MTL-polyinositols and TL-polyinositols are chiral (Tables 1, 2).

2.6 Numerical results

In Table 1 and Table 2 we list the numerical results for the numbers rn and rn, tn
and tn , respectively, for n from 1 up to 16. The number of MTL-polyinositols and

Table 1 The numerical results for the numbers rn and rn for the number n of hexagonal rings from 1 to
16

n rn rn

0 1 1

1 32 20

2 5120 2592

3 1146880 573952

4 298844160 149428224

5 84892712960 42446467072

6 25502442061824 12751222538240

7 7967336132771840 3983668094959616

8 2562351375392440320 1281175688111456256

9 842678201979617935360 421339100997916557312

10 282086756943037076602880 141043378471641045532672

11 95799423035664196530339840 47899711517834536732852224

12 32925528674152582159427174400 16462764337076328909785530368

13 11430767567997743931496668856320 5715383783998872729037037371392

14 4002697650510768892543602125701120 2001348825255384458341277639901184

15 1412072851444666880340899212075991040 706036425722333440416447740566831104

16 501392147316191287339969610550251356160 250696073658095643673931264768516030464
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Table 2 The numerical results for the numbers tn and tn for the number n of hexagonal rings from 1 to 16

n tn tn

1 9 8

2 528 288

3 82176 41472

4 16605056 8306880

5 3858808832 1929484288

6 980863729664 490432905216

7 265577882983776 132788961720672

8 75363275896258560 37681638230458368

9 22175742160587980800 11087871085962592256

10 6716351355829045166080 3358175677996999376896

11 2082596152950163872153600 1041298076476772274143232

12 658510573483064394409574400 329255286741557487851274240

13 211680880888847398144107174912 105840440444424224866960759808

14 69012028457082226268902585794560 34506014228541121161023614615552

15 22775368571688175580659593561243648 11387684285844087958973989760532480

16 7596850716911989203401927496470364160 3798425358455994604314781338778468352

TL-polyinositols with n hexagonal rings for n from 17 up to 50 are tabulated in the
supplementary material.

n

t

n

n
t

t

n

n

t

r
rn

n

n

nr
r

Fig. 3 The horizontal axis represents the number of inositol rings and the vertical axis represents the ratios
between the asymptotic values and the numerical results for MTL-polyinositols and TL-polyinositols
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For better understanding their asymptotic behaviors, in Fig. 3 we also illustrate the
ratios r(n)/rn, r(n)/rn, t (n)/tn and t(n)/tn for n up to 48. Figure 3 shows that the
asymptotic values are well-fitting to the numerical results.

3 Supplementary material

The detailed procedures of the asymptotic analysis and the numbers of MTL-
polyinositols and TL-polyinositols with n hexagonal rings for n from 17 up to 50
are included in the supplementary material.
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